metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.5D10, C23⋊1Dic10, (C2×C20).48D4, (C22×C10)⋊3Q8, C5⋊2(C23⋊Q8), C10.36C22≀C2, (C2×Dic5).61D4, (C22×C4).27D10, C22.237(D4×D5), C2.6(C23⋊D10), (C22×Dic10)⋊3C2, C10.55(C22⋊Q8), C2.6(C20.48D4), C10.31(C4.4D4), C2.5(C20.17D4), C22.94(C4○D20), (C23×C10).30C22, (C22×C20).56C22, C22.44(C2×Dic10), C23.366(C22×D5), C10.10C42⋊28C2, C22.92(D4⋊2D5), (C22×C10).322C23, C2.20(Dic5.5D4), (C22×Dic5).38C22, C2.20(Dic5.14D4), (C2×C10).32(C2×Q8), (C2×C10).316(C2×D4), (C2×C4).27(C5⋊D4), (C2×C22⋊C4).10D5, (C2×C23.D5).9C2, (C2×C10).76(C4○D4), (C10×C22⋊C4).12C2, C22.122(C2×C5⋊D4), SmallGroup(320,574)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊Dic10
G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=d10, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 710 in 202 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C22×Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23⋊Q8, C23.D5, C5×C22⋊C4, C2×Dic10, C22×Dic5, C22×C20, C23×C10, C10.10C42, C10.10C42, C2×C23.D5, C10×C22⋊C4, C22×Dic10, C23⋊Dic10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22≀C2, C22⋊Q8, C4.4D4, Dic10, C5⋊D4, C22×D5, C23⋊Q8, C2×Dic10, C4○D20, D4×D5, D4⋊2D5, C2×C5⋊D4, Dic5.14D4, Dic5.5D4, C20.48D4, C20.17D4, C23⋊D10, C23⋊Dic10
(2 50)(4 52)(6 54)(8 56)(10 58)(12 60)(14 42)(16 44)(18 46)(20 48)(21 70)(23 72)(25 74)(27 76)(29 78)(31 80)(33 62)(35 64)(37 66)(39 68)(81 103)(82 154)(83 105)(84 156)(85 107)(86 158)(87 109)(88 160)(89 111)(90 142)(91 113)(92 144)(93 115)(94 146)(95 117)(96 148)(97 119)(98 150)(99 101)(100 152)(102 137)(104 139)(106 121)(108 123)(110 125)(112 127)(114 129)(116 131)(118 133)(120 135)(122 157)(124 159)(126 141)(128 143)(130 145)(132 147)(134 149)(136 151)(138 153)(140 155)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 79)(18 80)(19 61)(20 62)(21 56)(22 57)(23 58)(24 59)(25 60)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(81 103)(82 104)(83 105)(84 106)(85 107)(86 108)(87 109)(88 110)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 119)(98 120)(99 101)(100 102)(121 156)(122 157)(123 158)(124 159)(125 160)(126 141)(127 142)(128 143)(129 144)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 61)(33 62)(34 63)(35 64)(36 65)(37 66)(38 67)(39 68)(40 69)(81 138)(82 139)(83 140)(84 121)(85 122)(86 123)(87 124)(88 125)(89 126)(90 127)(91 128)(92 129)(93 130)(94 131)(95 132)(96 133)(97 134)(98 135)(99 136)(100 137)(101 151)(102 152)(103 153)(104 154)(105 155)(106 156)(107 157)(108 158)(109 159)(110 160)(111 141)(112 142)(113 143)(114 144)(115 145)(116 146)(117 147)(118 148)(119 149)(120 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 126 11 136)(2 125 12 135)(3 124 13 134)(4 123 14 133)(5 122 15 132)(6 121 16 131)(7 140 17 130)(8 139 18 129)(9 138 19 128)(10 137 20 127)(21 104 31 114)(22 103 32 113)(23 102 33 112)(24 101 34 111)(25 120 35 110)(26 119 36 109)(27 118 37 108)(28 117 38 107)(29 116 39 106)(30 115 40 105)(41 97 51 87)(42 96 52 86)(43 95 53 85)(44 94 54 84)(45 93 55 83)(46 92 56 82)(47 91 57 81)(48 90 58 100)(49 89 59 99)(50 88 60 98)(61 143 71 153)(62 142 72 152)(63 141 73 151)(64 160 74 150)(65 159 75 149)(66 158 76 148)(67 157 77 147)(68 156 78 146)(69 155 79 145)(70 154 80 144)
G:=sub<Sym(160)| (2,50)(4,52)(6,54)(8,56)(10,58)(12,60)(14,42)(16,44)(18,46)(20,48)(21,70)(23,72)(25,74)(27,76)(29,78)(31,80)(33,62)(35,64)(37,66)(39,68)(81,103)(82,154)(83,105)(84,156)(85,107)(86,158)(87,109)(88,160)(89,111)(90,142)(91,113)(92,144)(93,115)(94,146)(95,117)(96,148)(97,119)(98,150)(99,101)(100,152)(102,137)(104,139)(106,121)(108,123)(110,125)(112,127)(114,129)(116,131)(118,133)(120,135)(122,157)(124,159)(126,141)(128,143)(130,145)(132,147)(134,149)(136,151)(138,153)(140,155), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,61)(20,62)(21,56)(22,57)(23,58)(24,59)(25,60)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,101)(100,102)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(81,138)(82,139)(83,140)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,126,11,136)(2,125,12,135)(3,124,13,134)(4,123,14,133)(5,122,15,132)(6,121,16,131)(7,140,17,130)(8,139,18,129)(9,138,19,128)(10,137,20,127)(21,104,31,114)(22,103,32,113)(23,102,33,112)(24,101,34,111)(25,120,35,110)(26,119,36,109)(27,118,37,108)(28,117,38,107)(29,116,39,106)(30,115,40,105)(41,97,51,87)(42,96,52,86)(43,95,53,85)(44,94,54,84)(45,93,55,83)(46,92,56,82)(47,91,57,81)(48,90,58,100)(49,89,59,99)(50,88,60,98)(61,143,71,153)(62,142,72,152)(63,141,73,151)(64,160,74,150)(65,159,75,149)(66,158,76,148)(67,157,77,147)(68,156,78,146)(69,155,79,145)(70,154,80,144)>;
G:=Group( (2,50)(4,52)(6,54)(8,56)(10,58)(12,60)(14,42)(16,44)(18,46)(20,48)(21,70)(23,72)(25,74)(27,76)(29,78)(31,80)(33,62)(35,64)(37,66)(39,68)(81,103)(82,154)(83,105)(84,156)(85,107)(86,158)(87,109)(88,160)(89,111)(90,142)(91,113)(92,144)(93,115)(94,146)(95,117)(96,148)(97,119)(98,150)(99,101)(100,152)(102,137)(104,139)(106,121)(108,123)(110,125)(112,127)(114,129)(116,131)(118,133)(120,135)(122,157)(124,159)(126,141)(128,143)(130,145)(132,147)(134,149)(136,151)(138,153)(140,155), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,79)(18,80)(19,61)(20,62)(21,56)(22,57)(23,58)(24,59)(25,60)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,101)(100,102)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(81,138)(82,139)(83,140)(84,121)(85,122)(86,123)(87,124)(88,125)(89,126)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137)(101,151)(102,152)(103,153)(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,126,11,136)(2,125,12,135)(3,124,13,134)(4,123,14,133)(5,122,15,132)(6,121,16,131)(7,140,17,130)(8,139,18,129)(9,138,19,128)(10,137,20,127)(21,104,31,114)(22,103,32,113)(23,102,33,112)(24,101,34,111)(25,120,35,110)(26,119,36,109)(27,118,37,108)(28,117,38,107)(29,116,39,106)(30,115,40,105)(41,97,51,87)(42,96,52,86)(43,95,53,85)(44,94,54,84)(45,93,55,83)(46,92,56,82)(47,91,57,81)(48,90,58,100)(49,89,59,99)(50,88,60,98)(61,143,71,153)(62,142,72,152)(63,141,73,151)(64,160,74,150)(65,159,75,149)(66,158,76,148)(67,157,77,147)(68,156,78,146)(69,155,79,145)(70,154,80,144) );
G=PermutationGroup([[(2,50),(4,52),(6,54),(8,56),(10,58),(12,60),(14,42),(16,44),(18,46),(20,48),(21,70),(23,72),(25,74),(27,76),(29,78),(31,80),(33,62),(35,64),(37,66),(39,68),(81,103),(82,154),(83,105),(84,156),(85,107),(86,158),(87,109),(88,160),(89,111),(90,142),(91,113),(92,144),(93,115),(94,146),(95,117),(96,148),(97,119),(98,150),(99,101),(100,152),(102,137),(104,139),(106,121),(108,123),(110,125),(112,127),(114,129),(116,131),(118,133),(120,135),(122,157),(124,159),(126,141),(128,143),(130,145),(132,147),(134,149),(136,151),(138,153),(140,155)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,79),(18,80),(19,61),(20,62),(21,56),(22,57),(23,58),(24,59),(25,60),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(81,103),(82,104),(83,105),(84,106),(85,107),(86,108),(87,109),(88,110),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,119),(98,120),(99,101),(100,102),(121,156),(122,157),(123,158),(124,159),(125,160),(126,141),(127,142),(128,143),(129,144),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,61),(33,62),(34,63),(35,64),(36,65),(37,66),(38,67),(39,68),(40,69),(81,138),(82,139),(83,140),(84,121),(85,122),(86,123),(87,124),(88,125),(89,126),(90,127),(91,128),(92,129),(93,130),(94,131),(95,132),(96,133),(97,134),(98,135),(99,136),(100,137),(101,151),(102,152),(103,153),(104,154),(105,155),(106,156),(107,157),(108,158),(109,159),(110,160),(111,141),(112,142),(113,143),(114,144),(115,145),(116,146),(117,147),(118,148),(119,149),(120,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,126,11,136),(2,125,12,135),(3,124,13,134),(4,123,14,133),(5,122,15,132),(6,121,16,131),(7,140,17,130),(8,139,18,129),(9,138,19,128),(10,137,20,127),(21,104,31,114),(22,103,32,113),(23,102,33,112),(24,101,34,111),(25,120,35,110),(26,119,36,109),(27,118,37,108),(28,117,38,107),(29,116,39,106),(30,115,40,105),(41,97,51,87),(42,96,52,86),(43,95,53,85),(44,94,54,84),(45,93,55,83),(46,92,56,82),(47,91,57,81),(48,90,58,100),(49,89,59,99),(50,88,60,98),(61,143,71,153),(62,142,72,152),(63,141,73,151),(64,160,74,150),(65,159,75,149),(66,158,76,148),(67,157,77,147),(68,156,78,146),(69,155,79,145),(70,154,80,144)]])
62 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | - | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | Q8 | D5 | C4○D4 | D10 | D10 | C5⋊D4 | Dic10 | C4○D20 | D4×D5 | D4⋊2D5 |
kernel | C23⋊Dic10 | C10.10C42 | C2×C23.D5 | C10×C22⋊C4 | C22×Dic10 | C2×Dic5 | C2×C20 | C22×C10 | C2×C22⋊C4 | C2×C10 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 3 | 2 | 1 | 1 | 4 | 2 | 2 | 2 | 6 | 4 | 2 | 8 | 8 | 8 | 4 | 4 |
Matrix representation of C23⋊Dic10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 26 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 39 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 39 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 21 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
40 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 26 | 39 |
0 | 0 | 0 | 0 | 31 | 15 |
G:=sub<GL(6,GF(41))| [40,40,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,26,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,39,40,0,0,0,0,0,0,1,0,0,0,0,0,39,40,0,0,0,0,0,0,21,1,0,0,0,0,0,2],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,26,31,0,0,0,0,39,15] >;
C23⋊Dic10 in GAP, Magma, Sage, TeX
C_2^3\rtimes {\rm Dic}_{10}
% in TeX
G:=Group("C2^3:Dic10");
// GroupNames label
G:=SmallGroup(320,574);
// by ID
G=gap.SmallGroup(320,574);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,253,120,254,387,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=d^10,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations